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A DNA methylation atlas of normal human 
cell types
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Ruth Shemer2, Yuval Dor2 ✉, Benjamin Glaser13 ✉ & Tommy Kaplan1,2 ✉

DNA methylation is a fundamental epigenetic mark that governs gene expression  
and chromatin organization, thus providing a window into cellular identity and 
developmental processes1. Current datasets typically include only a fraction of 
methylation sites and are often based either on cell lines that underwent massive 
changes in culture or on tissues containing unspeci!ed mixtures of cells2–5. Here  
we describe a human methylome atlas, based on deep whole-genome bisul!te 
sequencing, allowing fragment-level analysis across thousands of unique markers  
for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell 
type are more than 99.5% identical, demonstrating the robustness of cell identity 
programmes to environmental perturbation. Unsupervised clustering of the atlas 
recapitulates key elements of tissue ontogeny and identi!es methylation patterns 
retained since embryonic development. Loci uniquely unmethylated in an individual 
cell type often reside in transcriptional enhancers and contain DNA binding sites for 
tissue-speci!c transcriptional regulators. Uniquely hypermethylated loci are rare and 
are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting  
a new role in shaping cell-type-speci!c chromatin looping. The atlas provides an 
essential resource for study of gene regulation and disease-associated genetic 
variants, and a wealth of potential tissue-speci!c biomarkers for use in liquid biopsies.

Understanding how the same DNA sequence is interpreted differently in 
different cell types is a fundamental challenge of biology. Gene expres-
sion, DNA accessibility and chromatin packaging are well-established 
essential determinants of cellular phenotype. Underneath these lies 
DNA methylation, a stable epigenetic mark that underpins the lifelong 
maintenance of cellular identity.

Available human DNA methylation datasets suffer from major 
limitations. Multiple studies that have characterized methylomes of 

embryonic development, differentiation, cancer or other settings6–9  
have relied on the Illumina BeadChip platforms, which are limited 
to a predefined subset of 450,000 or 860,000 CpG methylation 
sites, representing just 3% of around 30 million CpG sites in the  
human genome10. In addition, by measuring each CpG site indepen-
dently, such assays overlook coordinated patterns of DNA methyl-
ation occurring in blocks, the critical functional units of DNA  
methylation11,12.
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Most DNA methylation analyses interrogated primarily bulk tissue, 

thus precluding the study of minority cell types such as tissue-resident 
immune cells, fibroblasts or endothelial cells, whereas others analysed 
cultured cells, which may contain nonphysiological methylation pat-
terns introduced in vitro13. As a partial solution, recent studies used 
single-cell RNA sequencing data from whole tissues to identify marker 
genes expressed in specific cell types, then identified specific CpGs 
whose methylation is anticorrelated with expression. These could 
be used on array-based methylomes to deconvolute bulk tissue and 
assess cell type composition or sample purity14,15, but might be insuffi-
ciently accurate for identification of rare cellular contributions in liquid 
biopsies. Some studies of the human methylome did analyse isolated 
primary cells using whole-genome bisulfite sequencing (WGBS), but 
their scope was limited2,4,5.

To overcome these limitations and to accurately characterize the 
human cell methylome, we performed deep genome-wide sequencing 
with paired-end, 150 base pair (bp)-long reads at an average sequenc-
ing depth of 30× (6.62× or greater) on fluorescent activated cell sorter 
(FACS)-purified populations of 39 human cell type groups obtained from 
freshly dissociated adult healthy tissues. We coalesced methylation pat-
terns across the entire genome into blocks of homogeneously methyl-
ated CpG sites and used these to study variation in methylation patterns 
across cell types. Here we identify and characterize genomic regions 
that are uniquely methylated in a tissue or cell-type-specific manner, 
provide vignettes of their possible biological function and introduce 
a fragment-level deconvolution algorithm with applications such as 
clinical diagnosis based on circulating cell-free DNA methylation.

Methylation atlas of human cell types
To portray genome-wide DNA methylation across a variety of cell types, 
we performed WGBS (150-bp-long paired-end reads to a mean depth of 
at least 30×) on 205 samples representing 77 primary cell types from 
137 consenting donors. These were carefully sorted and mapped to the 
human genome (hg19, hg38). Average sample purity (that is, propor-
tion of material from desired cell type) was over 90% as determined by 
flow cytometry, gene expression and DNA methylation analysis. Sev-
eral samples showed lower purity (for example, colon fibroblasts 78%, 
smooth muscle cells (SMC) 82%, endothelial cells 86% or adipocytes 
87%). Detailed descriptions of sample isolation and purity estimations, 
as well as sample information, are provided in Supplementary Table 1, 
Supplementary Figs. 1–3 and Supplementary Information.

The cell types analysed (Fig. 1) represent most major human cell 
types, allowing a composite view of physiological systems (for example, 
gastrointestinal tract, haematopoietic cells and pancreas), as well as a 
comparison of similar cell types in different environments (for example, 
tissue-resident macrophages).

The 205 methylomes show great similarities between replicates 
with distinctive changes between cell types in a block-like manner, as 
shown in Fig. 1. We sought to identify genomic regions differentially 
methylated in specific cell types to shed light on cell-type-specific 
biological processes, define cell identity and facilitate development 
of methylation biomarkers to identify the cellular origin of circulating 
cfDNA fragments1,11,12,16–21.

We developed wgbstools, a computational machine learning suite, 
to represent, compress, visualize and analyse WGBS data (https://
github.com/nloyfer/wgbs_tools). We segmented the genome into 
7,104,162 nonoverlapping continuous blocks by identification of 
change points in DNA methylation patterns across multiple conditions. 
Each block spans highly correlated CpG sites similarly methylated in 
each sample but that may covary across cell types (Supplementary 
Information). We retained 2,783,421 methylation blocks of at least 
three CpGs with an average length of 544 bp (interquartile range 
(IQR) = 565 bp) and eight CpGs (IQR = 5 CpGs). Robust analysis of these 
compact genomic units is more straightforward than individual CpG 

sites and because of the regional nature of methylation can be viewed 
as the biological ‘atoms’ of human DNA methylation12.

Interindividual variation in methylation
Methylation patterns were extremely robust across different individu-
als. For most cell types, 0.5% or less of blocks showed a difference of 50% 
or more across different donors compared with 4.9% among samples 
of different cell types (Extended Data Fig. 4). This high similarity in 
DNA methylation across donors is on a par with the estimated interin-
dividual variability of genomic sequence22. Whereas the definition of 
50% is somewhat arbitrary, other thresholds (35–50%) show a similar 
trend, with 0.5% or less variable blocks. Similar interindividual varia-
tion was observed in replicates obtained from different laboratories 
(Supplementary Table 1). Strikingly, for cell types with n ≥ 3 biologi-
cal replicates, 195 of 197 samples (99%) showed the highest similarity 
to another replicate (rather than to another cell type from the same 
donor). These results demonstrate the reproducibility of preparations 
but also, in agreement with previous studies6, highlight the funda-
mental biological phenomenon that DNA methylation is primarily 
determined by cell lineage and cell-type-specific programmes rather 
than by genetic or environmental factors.

Methylation records developmental history
Whereas DNA methylation patterns reflect the functional identity 
of a cell, they could also be used to track its developmental history. 
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Fig. 1 | Methylation atlas of the adult human body. DNA methylation patterns 
of 205 methylomes (rows) across 344 CpG sites (columns) are demonstrated in 
a 18 kb region. Highlighted are regions unmethylated specifically in B cells (blue), 
neurons (green), thyroid epithelium (yellow) and neurons/oligodendrocytes 
(oliogodend.) (pink).
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To identify patterns shared by the progeny of early progenitors, we 
calculated average methylation within blocks of at least four CpGs 
and selected those showing the highest variability across all samples 
(21,000 blocks, top 1%; Supplementary Table 2). We then clustered all 
205 methylomes using an unsupervised agglomerative algorithm that 
iteratively identifies and connects the two closest samples regardless 
of their labelling23. This analysis systematically grouped biological 
samples of the same cell type (Fig. 2), similar to array-based clustering 
of purified human blood cells6. This supports the reproducibility of 
cell isolation and suggests that three or four replicates of each normal 
cell type are sufficient to infer its methylation patterns for practical 
applications such as biomarker identification.

Strikingly, the resulting fanning diagram recapitulates key elements of 
lineage relationships among human tissues. For example, pancreatic islet 
cell types (alpha, beta and delta), which originate from the same embry-
onic endocrine progenitor24, densely cluster together. Consistent with 
methylomes reflecting lineage rather than function, islet cells further clus-
ter with pancreatic duct and acinar cells, and then with hepatocytes, with 
whom they share endodermal origins. Conversely, endoderm-derived islet 
cells do not cluster with ectoderm-derived neurons25 despite common 
tissue-specific gene regulation and exocytosis machinery26.

Additional examples include the clustering of gastric, small intestine 
and colon epithelial cells; the clustering of all blood cell types; and the 
clustering of multiple mesoderm-derived cell types including vascular 
endothelial cells, adipocytes and skeletal muscle. Interestingly, lung bron-
chial epithelium clustered with oesophagus and oral epithelium whereas 
lung alveolar epithelium clustered with intestinal epithelium, consistent 
with evidence of early developmental origins of the alveolar cell lineage27.

Some methylation patterns were common to lineages that formed 
during early developmental stages. For example, 892 regions were 
unmethylated in epithelial cells derived from early endodermal deriva-
tives and methylated in mesoderm- and ectoderm-derived cells (Meth-
ods). We suggest that these were demethylated in the endoderm germ 
layer, with derived cell types retaining these patterns decades later 
(Extended Data Fig. 5a). Because endoderm derivatives do not share 

common function or gene expression, this provides yet another exam-
ple of methylation patterns as a stable lineage mark.

Finally, we applied the same segmentation and clustering approach 
to a published methylation atlas from the Roadmap Epigenomics pro-
ject4. The algorithm did not group related cell types, and often clus-
tered samples based on donor identity. This further emphasizes the 
importance of careful purification of homogeneous cell types, avoiding 
mixed cell populations (Extended Data Fig. 5b).

Cell-type-specific methylation markers
We next turned to study genomic regions differentially methylated in a 
cell-type-specific manner. We organized the 205 samples into 39 groups 
of specific cell types, including blood cell types (B, T, natural killer (NK), 
granulocytes, monocytes and tissue-resident macrophages), breast epi-
thelium (basal and luminal), lung epithelium (alveolar and bronchial), 
pancreatic endocrine (alpha, beta and delta) and exocrine (acinar and 
duct) cells, vascular endothelial cells from various sources, cardiomyo-
cytes and cardiac fibroblasts and more. We also defined 12 supergroups 
in which related cell types were grouped, including muscle cells, gas-
trointestinal epithelium, pancreas and more (Supplementary Table 3).

We then focused on differentially methylated blocks comprising 
five or more CpGs that are unmethylated in one group of cell types but 
methylated in all other samples, or vice versa. Intriguingly, almost all 
regions (97%) were unmethylated in one cell type and methylated in all 
others. We then sorted these differential regions by absolute difference 
in methylation in target cell type versus all other samples (Methods 
and Supplementary Information).

The top 25 differentially unmethylated regions for each cell type 
comprise a human cell-type-specific methylation atlas of 1,246 markers 
(Fig. 3 and Supplementary Table 4). These regions are uniquely unmeth-
ylated in particular cell types (average methylation 13%) and methyl-
ated in all other samples (average methylation 91%), and can serve as 
sensitive biomarkers for quantification of the presence of DNA from a 
specific cell type in a mixture. The markers include 953 cell-type-specific 
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unmethylated loci, as well an additional 293 loci that are unmethylated 
in few related cell types. A fragment-level analysis further shows that 
the vast majority of DNA fragments at these regions are unmethylated 
in the target cell type compared with almost none in all other cell types 
(Extended Data Fig. 6). The atlas has various applications, including the 
analysis of circulating cell-free DNA fragments18–21,28–30. Importantly, 
only about 1% of cell type-specific markers are covered by reduced rep-
resentation bisulfite sequencing (RRBS), 4–8% by methyl-sequencing 

hybrid capture panels and 14–24% are represented in single-CpG 450K/
EPIC arrays10, emphasizing the benefits of whole-genome sequencing 
for exhaustive identification of biomarkers.

Human cell-type-specific regulatory maps
We next turned to characterize these sets of cell-type-specific dif-
ferentially unmethylated regions. For this we identified the top 
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250 unmethylated markers for each cell type (Supplementary Table 
4b) and used GREAT to identify those genes adjacent to each group 
of markers, and to test their enrichment for various gene-set annota-
tions31. Genes adjacent to loci uniquely unmethylated in a given cell type 
typically reflect the functional identity of that cell type. For example, 
genes near B cell markers were enriched for B cell morphology, differ-
entiation, IgM levels and lymphopoiesis; NK cell markers were associ-
ated with NK cell-mediated cytotoxicity, the haematopoietic system, 
cytotoxicity and lymphocyte physiology; Fallopian tube markers were 
enriched for egg coat and perivitelline space; and cardiomyocyte mark-
ers for cardiac relaxation, systolic pressure, muscle development and 
hypertrophy (Supplementary Table 5).

We then analysed the DNA accessibility and chromatin packaging of 
cell-type-specific markers as defined by assay for transposase-accessible 
chromatin using sequencing (ATAC–seq), DNase I hypersensitive site 
sequencing (DNaseI–seq)4,32 and histone marks indicative of active pro-
moters and enhancers4. The top 250 unmethylated markers for monocytes 
and macrophages are highly accessible and characterized by H3K27ac and 
H3K4me1 in monocytes, whereas markers of other cell types show no 
enrichment in monocytes (Fig. 4a), with similar results for markers of 
other cell types (Extended Data Fig. 7). We also show strong coordinated 
enrichment of chromHMM enhancer annotations at cell-type-specific 
markers33 (Fig. 4a). These findings are consistent with previous studies that 
have associated tissue-specific demethylation with gene enhancers1,34.
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Fig. 4 | Cell-type-specific markers as putative enhancers. a, Average ChIP–
seq signal for the active regulatory marker H3K27ac, enhancer marker 
H3K4me1, DNA accessibility and chromHMM enhancer annotations for the 
top 250 cell-type-specific unmethylated markers for monocytes/macrophages. 
Average signal for the top 250 markers of other blood cell types (granulocytes 
and B, T and NK cells) shown as grey lines, for comparison. b, Cell-type-specific 

markers are enriched for regulatory motifs. Shown are the top TF binding site 
motifs, enriched among the top 1,000 differentially unmethylated regions per 
cell type, using HOMER motif analysis. Motifs similar to previous (more 
significant) hits not included. Shown are HOMER binomial P values. Alv., 
alveolar; Bronch., bronchial; Endoth., endothelium; Ep., epithelium; Oesoph., 
oesophagus; Panc., pancreas.
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To further assess the biological importance of cell-type-specific 

unmethylated regions, we studied their association with transcription 
factors (TFs) that could either affect DNA methylation or bind DNA in 
a cell-type-specific manner, depending on methylation and chroma-
tin35–38. We identified the top 1,000 unmethylated markers per cell type 
(Supplementary Table 4c) and performed motif analysis using HOMER39 
to calculate the enrichment of known TF binding motifs (Supplemen-
tary Table 6a). For most cell types the top motifs included master regu-
lators and key TFs (Fig. 4b). For example, B cells are enriched for Ebf2/
HEB/E2A, granulocytes for CEBP/AP1/ETS and T cells for ETS/RUNX. 
This association between cell-type-specific unmethylated regions 
and TF binding motifs can identify new gene regulatory circuits and 
expose distal enhancers active in specific cell types.

We aimed to identify the target genes of putative enhancers marked 
by cell-type-specific demethylation. Top markers frequently fall within 
intronic regions and are likely to regulate these genes (for example, 
glucagon in pancreatic alpha cells, NPPA and MYL4 in cardiomyocytes 
and MBP in oligodendrocytes; Supplementary Table 7), or proximally to 
probable targets (for example, a beta cell marker 5 kb from the insulin 
gene). Other markers are further apart from their target genes. We 
devised a computational algorithm to identify genes in the proximity 
of cell-type-specific markers showing increased gene expression levels 
under matching conditions (Methods). This highlighted hallmark genes 
for many cell types and suggested putative targets for many of the top 
25 unmethylated markers for each cell type. For example, hepatocyte 
markers were associated with APOE, APOC1, APOC2 and the glucagon 
receptor. Similarly, cardiomyocyte markers were associated with NPPA, 
NPPB and myosin genes; and pancreatic islet markers with insulin and 
glucagon genes (Supplementary Table 7). These findings further sup-
port the principle that loci specifically unmethylated in a given cell 
type are probably enhancers positively regulating genes expressed 
in this cell type, often controlling adjacent genes. We note, however, 
that genes adjacent to a locus specifically unmethylated in a given cell 
type are often broadly expressed beyond this cell type (Discussion).

To generate a catalogue of putative regulatory regions in each cell 
type we applied a fragment-level analysis across all samples from each 
cell type, independently of other cell types. We scanned the entire 
genome and identified genomic regions in which at least 85% of DNA 
fragments with at least four CpGs are unmethylated (Methods). This 
identified a set of unmethylated genomic regions in each of the 39 cell 
type groups analysed, including 36,111 regions on average (Supple-
mentary Dataset 1). These regions were then annotated for genomic 
features, showing that 56% on average overlapped CpG islands, 46% 
were near promoter regions and 44% overlapped CTCF binding sites, 
thus highlighting the regulatory and structural roles of unmethylated 
loci. When available, we crossed these regions with chromatin immuno-
precipitation sequencing (ChIP–seq) peaks from ENCODE5 and Road-
map Epigenomics4 under matching conditions, including H3K4me3, 
H3K27ac, H3K4me1, H3K27me3, CTCF and ATAC–seq, and generated a 
cell-type-specific catalogue of putative enhancer regions comprising 
unmethylated regions that overlap H3K27ac, but not H3K4me3, peaks 
(Supplementary Dataset 2). Motif analysis of these regions identified 
key TFs in each cell type, similar to those shown in Fig. 4 (Supplemen-
tary Table 6b,c).

Cell-type-specific hypermethylated loci
We studied those genomic regions methylated in one cell type but 
unmethylated elsewhere in the human body. These are enriched for 
CpG islands (38% of methylated regions compared with 1.7–2.7% of 
cell-type-specific unmethylated regions), and are marked by H3K27me3 
and Polycomb in other cell types (Fig. 5a–c), as previously reported 
for cancer and developmental processes40,41. These cell-type-specific 
hypermethylated regions were generally less significant for motif 
enrichment (compared with uniquely unmethylated regions). 

Intriguingly, only around 3% of the total set of cell-type-specific dif-
ferentially methylated regions are hypermethylated.

After pooling all cell-type-specific hypermethylated regions, we 
identified strong enrichment for target sequences of the chroma-
tin regulator CTCF (P ≤ 1 × 10–18; Fig. 5d). This suggests that DNA 
methylation of CTCF binding sites could act as a tissue-specific 
regulatory switch to modulate its binding, potentially affecting 
tissue-specific three-dimensional genomic organization35,42,43. To 
test this idea we compared patterns of DNA methylation at CTCF 
sites with genome-wide CTCF protein binding in specific tissues. 
Figure 5e shows the methylation pattern and published in vivo CTCF 
occupancy at one locus, which is methylated specifically in the colon 
and intestine. Consistent with DNA methylation preventing CTCF 
binding, ChIP data show selective absence of CTCF binding at this 
locus in the colon. In addition, loci methylated in specific cell types 
were enriched for targets of the transcriptional repressor of neural 
genes, RE1-silencing TF/neuron-restrictive silencer factor (REST/
NRSF) (P ≤ 1 × 10–24), and this was seen most prominently in the methy-
lome of pancreatic islet cells (Fig. 5f). Whereas DNA methylation has 
not been shown to affect the binding or activity of REST, this finding 
raises the intriguing possibility that methylation of REST targets in 
islets could permit endocrine differentiation independently of REST 
repression.

Fragment-level methylome deconvolution
Last, we developed a computational fragment-level deconvolution 
algorithm for DNA methylation sequencing data and used the top 
25 markers defined for each cell type (a total of 1,246 markers) to study 
methylomes obtained from composite tissue samples and cfDNA. 
Briefly, we generated an atlas in which the percentage of unmethyl-
ated fragments is computed for every marker (row) in each cell type 
(column). A non-negative least-squares (NNLS) algorithm is then used 
to fit an input sample and estimate its relative contributions (Supple-
mentary Information).

To estimate the accuracy of our fragment-level approach, we used 
in silico mixtures of sequenced reads. For each cell type we applied a 
leave-one-out approach to mix one held-out sample in leukocyte reads, 
then used the deconvolution algorithm to infer cellular composition 
in the mixture. We repeated this process at concentrations varying 
from 0 to 10%. As shown in Fig. 6a, we found that the 1,246 markers 
(top 25 per cell type) allowed accurate detection of DNA from a given 
source at around 0.1% resolution, an improvement of nearly one order 
of magnitude in comparison with array-based approaches28. Four-way 
in silico mixes, in which endothelial and hepatocyte methylomes were 
also included to realistically mimic cfDNA composition, yielded similar 
results (Extended Data Fig. 8).

We then estimated the cellular composition of leukocytes and cfDNA 
using WGBS data from 23 healthy donors; 99.5% of leukocyte-derived 
DNA was attributed to granulocytes, monocytes, macrophages and 
NK, T and B cells, consistent with typical blood counts (Fig. 6b and Sup-
plementary Table 8). The cfDNA of healthy subjects was mostly derived 
from leucocytes: granulocytes (29.7%), monocytes/macrophages (20%) 
and lymphocytes (3%). Solid tissues contributing to cfDNA included 
vascular endothelial cells (6%) and hepatocytes (3.1%) (Fig. 6c), consist-
ent with previous results28. The current atlas also shows a significant 
contribution of megakaryocytes (31%) and erythrocyte progenitor 
(prog.) cells (5%) to cfDNA, which were not observed in previous studies 
that used reference methylomes of a more limited scope.

Endothelial cfDNA in patients with COVID-19
Analysis based on DNA methylation patterns offers an opportunity 
to identify the tissue origins of cfDNA. COVID-19 inflicts damage to 
multiple tissues, some of which have no biomarkers. We used the atlas 
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to deconvolve shallow WGBS data from 52 patients hospitalized owing 
to COVID-19 (ref. 44). We identified excessive cell-free DNA fragments 
from granulocytes, erythrocyte progenitors, lung and liver, consistent 
with published analysis of these samples (Supplementary Information). 
Strikingly, we also identified a significant contribution of vascular 
endothelial cells to the cfDNA of these patients, which could not be 
detected in the published analysis in the absence of an endothelial 
cell methylome reference (Fig. 6d). Interestingly, the concentration 
of endothelial cell-derived cfDNA was higher in patients with severe 
disease (WHO score ≥7) compared with those with milder disease (WHO 
score ≤6; P ≤ 6 × 10–5, Mann–Whitney). These results suggest that vas-
cular endothelial cell death plays a substantial role in the pathogenesis 

of COVID-19, potentially related to coagulopathy, and highlight the 
benefit of using a comprehensive cell-type-specific atlas for cfDNA 
methylome analysis.

 
Cell type deconvolution of composite tissues
Finally, we analysed whole-genome methylomes from ENCODE5 and 
the Roadmap Epigenomics atlas4 using our atlas (based on 25 markers 
per cell type). Deconvolution of some methylomes showed a homog-
enous composition as intended—for example, 97–99% T cell DNA in 
Roadmap T cell samples (Supplementary Table 9). However, analysis of 
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other samples showed a highly heterogeneous composition, as previ-
ously reported based on array-based bulk tissue deconvolution algo-
rithms such as EpiDISH and EpiScore14,15,45. For example, heart ventricle 
samples comprised 29% cardiomyocytes, 41% endothelial cells and 18% 
cardiac fibroblasts (Fig. 6e); liver methylomes comprised around 60% 
hepatocytes, 21% blood and 20% endothelial cells; and colon methylomes 
comprised about 50% colon epithelium, 26% colon fibroblasts and 19% 
blood. Most strikingly, Roadmap lung samples were dominated by blood 
(40%), endothelium (34%) and smooth muscle (5%), with only 22% of DNA 
derived from lung epithelial cells (Fig. 6f–i and Supplementary Table 9). 
Importantly, a similar deconvolution of the 205 samples presented here 
yielded an average contribution of 94% for the expected cell type for each 
sample (median of 95%, Supplementary Table 10), or of 91% (median of 
92%) in a more stringent leave-one-out cross-validation analysis (Sup-
plementary Table 11), highlighting the purity of collected samples.

Naturally, fragment-level analysis is limited to cell types for which 
whole-genome sequencing data are available, and some cell types 
can be analysed only by array-based algorithms15,28. Nonetheless, the 
markers and algorithm presented here allow analysis of composite 
bulk tissue and plasma samples, across multiple cell types and with 
high accuracy.

Discussion
The comprehensive atlas of human cell type methylomes described 
here sheds light on principles of DNA methylation and provides a valu-
able resource for multiple lines of investigation, as well as translational 
applications.

Our analysis used whole-genome sequencing data to show that 
methyl ation patterns are strikingly similar among healthy replicates 

Fig. 6 | Fragment-level deconvolution using cell type-specific biomarkers. 
a, Cell-type-specific markers achieved less than 0.1% resolution. In silico 
simulations for five cell types, in which held-out samples were computationally 
mixed within leukocytes then analysed using 1,246 atlas markers plus 
25 additional megakaryocyte markers (red) or an array-based deconvolution of 
these mixes28 (grey). Box plots show average contribution in ten simulations, 
with error bars representing 1 s.d. b,c, Cell type composition in leukocytes (b) 
and plasma samples (c) from healthy donors. Box plots show overall proportions 
of leukocytes, megakaryocytes and erythroblasts (MEP) and other cell types.  
d, Analysis of low-coverage plasma samples from 52 patients with SARS-CoV-2 

(ref. 44) identified endothelial-derived cfDNA in patients with WHO ordinal 
scale seven or higher (requiring admittance to intensive care unit).  
e–i, Fragment-level deconvolution of Roadmap/ENCODE samples4,5 showing 
cell-type-specific contributions. e, Heart ventricle samples contained a 
mixture of cardiomyocytes, endothelial cells, fibroblasts and blood. f, Liver 
samples contained around 60% of hepatocyte DNA, plus blood and endothelial 
cells. g, Colon samples contained approximately 50% epithelium, plus 
fibroblasts and blood. h, Lung samples contained less than 30% of lung 
epithelial cells. i, Pancreatic islet samples contained beta, alpha, duct and 
acinar cells. Box plots denote median and IQR, with whiskers 1.5× IQR.
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of the same cell type from different individuals. The similarity between 
individuals reflects the robustness of cell differentiation and mainte-
nance circuits, at least as far as healthy tissues are concerned. Patholo-
gies involving destabilization of the epigenome obviously disrupt these 
circuits, resulting in a larger variety of methylation patterns among 
cells descended from a specific normal cell type. We predict that, even 
in cancers (of the same primary anatomic site and histologic type), 
comparative methylome analysis of purified epithelial cells, performed 
at the level of methylation blocks, will show a smaller interindividual 
variation than typically assumed.

As the atlas demonstrates, each cell type has a set of genomic 
regions that are uniquely unmethylated in that cell type compared 
with others, as well as additional genomic regions that share methyla-
tion patterns with related cell types. Using unsupervised clustering 
of cell-type-specific methylomes, we found that cell types were clus-
tered in ways that reflected their developmental origins rather than 
expression patterns. This offers a fascinating view of DNA methyla-
tion as a record of the methylomes of progenitor cells, retained in the 
genome through dramatic developmental transitions and decades of 
life thereafter. We propose that comparative methylome analysis will 
allow reconstruction of parts of the methylomes of fetal structures or 
cell types, similarly to the reconstruction of last common ancestors in 
evolutionary biology.

The vast majority of cell-type-specific differentially methylated 
regions were specifically demethylated in one cell type. The chroma-
tin of these regions is typically highly accessible and bears histone 
marks associated with active gene regulation, as found in enhancers 
and promoters. Moreover, these loci are enriched for TF binding site 
motifs that operate in that cell type. We devised an integrated approach 
that, based on distance and gene expression profiles, allowed us to 
highlight potential target genes for these putative enhancer regions. 
Many enhancer regions were associated with nearby genes that are 
broadly expressed, potentially reflecting gene regulation by multiple 
tissue-specific enhancers. Our findings are consistent with previous 
studies that showed tissue-specific hypomethylation occurring at 
gene enhancers35–37. Our data-driven approach for marker identifica-
tion is complementary to recent gene-centric approaches14,15 that use 
tissue-specific single-cell RNA sequencing data to define marker genes 
and identify neighbouring CpGs specifically unmethylated in target cell 
types. Finally, we devised a fragment-level genomic analysis to identify 
tens of thousands of unmethylated regions, per cell type, which were 
annotated with genomic features, DNA accessibility, chromatin marks 
and TF binding motifs to produce a cell type-specific catalogue of puta-
tive enhancers. Further analysis of this atlas will show and validate the 
complete set of human enhancers in each cell type.

Conversely, we identified genomic regions specifically methylated in 
one or two cell types, representing around 3% of cell-type-specific dif-
ferentially methylated regions. These are often located in CpG islands 
and characterized by H3K27me3 and Polycomb binding in tissues where 
the locus is not methylated40,41. This epigenetic repressive switching 
was previously described in cancer and during early development41,46, 
but its role during differentiation of specific cell types remains unclear. 
These regions are enriched for CTCF binding sites, suggesting a role for 
DNA methylation in attenuating the binding of CTCF and thus modu-
lation of the cell-type-specific, three-dimensional organization of 
neighbouring DNA35,36,47.

For DNA methylation sequencing data, the atlas described here 
is, to our knowledge, the most comprehensive compendium to 
date. We identified more than one thousand cell-type-unique DNA 
methylation regions that could serve as accurate and specific biomark-
ers for fragment-level analysis and identification of cell death events 
by monitoring of cfDNA. Notably, most of these marker regions are 
not covered by 450K/EPIC BeadChip DNA methylation arrays, and 
were not previously appreciated. To allow interpretation of array 
data, we offer alternative sets of cell-type-specific markers limited 

to CpG sites included in BeadChip 450K arrays. Similarly, we identi-
fied cell-type-specific markers in regions targeted by both RRBS and 
hybrid capture panels (Extended Data Fig. 9 and Supplementary  
Tables 12–17). As shown in Extended Data Fig. 10, the array-adapted 
atlas allows high-resolution interpretation of array methylomes of 
pancreatic islet, lung and breast biopsies, highlighting the presence 
of cell types not previously profiled48–50.

Many cell types are missing from the atlas, typically because 
of limited availability of material. Examples include osteoblasts, 
cholangiocytes, cells of the adrenal gland, urethral epithelium and 
haematopoietic stem cells. Additionally, we did not separate many 
subpopulations of interest—for example, different types of neurons or 
lymphocytes. The atlas is viewed as a living, publicly available database 
to be updated in the future. The resolution of the atlas yields a quanti-
tative understanding of composite tissues and allows one to identify 
missing methylomes of additional cell types yet to be characterized. 
We also acknowledge that the purity of the sorted cell populations 
varies, owing to variation in the quality of antibodies used for FACS and 
the extent to which they allow separation of cell types. Nonetheless, 
even the least pure cell types in the atlas (for example, some prepara-
tions of vascular endothelial cells, fibroblasts, SMC and adipocytes 
showing 70–80% purity), when averaged over replicates, are useful for 
identification of differentially methylated regions and for inference 
of cell composition in mixtures.

In summary, we present a comprehensive methylation atlas of pri-
mary human cell types along with an extensive set of cell-type-specific 
markers and computation tools for fragment-level analysis of mixed cell 
type samples. These complement the plethora of array-based methyl-
omes and deconvolution tools available for the analysis of array data. 
Together, the data shed light on the roles of DNA methylation in cellular 
biology and gene regulation and facilitate the identification of enhanc-
ers active in each cell type. Perhaps the most promising utility of our 
atlas is the potential for fragment-level deconvolution of mixed cell 
type samples, allowing sensitive identification of the tissue of origin of 
cfDNA in plasma of individuals with cancer and other diseases18–21,28–30.
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Methods
Human tissue samples
Human tissues were obtained from various sources, as detailed in Sup-
plementary Table 1. The majority (148) of the 205 samples analysed 
were sorted from tissue remnants obtained at the time of routine, clini-
cally indicated surgical procedures at the Hadassah Medical Center. In 
all cases, normal tissue distant from any known pathology was used. 
Surgeons and/or pathologists were consulted before removal of tissue 
to confirm that its removal would not compromise the final patho-
logic diagnosis in any way. For example, in patients undergoing right 
colectomy for carcinoma of the caecum, the most distal part of the 
ascending colon and most proximal part of the terminal ileum were 
obtained for cell isolation. Normal bone marrow was obtained at the 
time of joint replacement in patients with no known haematologic 
pathology. The patient population included 135 individuals (n = 60 
males, n = 74 females) aged 3–83 years. The majority of donors were 
White. Approval for collection of normal tissue remnants was provided 
by the Institutional Review Board (IRB, Helsinki Committee), Hadas-
sah Medical Center, Jerusalem, Israel. Written informed consent was 
obtained from each donor or legal guardian before surgery.

As described in Supplementary Table 1, some cells and tissues were 
obtained through collaborative arrangements: pancreatic exocrine and 
liver samples (cadaveric organ donors, n = 5) from M. Grompe, Oregon 
Health & Science University; adipocytes (subcutaneous adipocytes at 
time of cosmetic surgery following weight loss, n = 3), oligodendro-
cytes and neurons (brain autopsies, n = 14) from K. L. Spalding and H. 
Druid, Karolinska Institute, Stockholm; and research-grade cadaveric 
pancreatic islets from J. Shapiro, University of Alberta (n = 16). In all 
cases, tissues were obtained and transferred in compliance with local 
laws and after the approval of the local ethics committee on human 
experimentation. Sixteen cell types were obtained from commercial 
sources, including 15 from Lonza and one from Sigma-Aldrich. Three 
pancreatic islet preparations were obtained from the Integrated Islet 
Distribution Program (https://iidp.coh.org).

Tissue dissociation and FACS sorting of purified cell populations
Fresh tissue obtained at the time of surgery was trimmed to remove 
extraneous tissue. Cells were dispersed using enzyme-based protocols 
optimized for each tissue type. The resulting single-cell suspension 
was incubated with the relevant antibodies and FACS sorted to obtain 
the desired cell type (Extended Data Fig. 2 and Supplementary Infor-
mation).

Purity of live sorted cells was determined by messenger RNA analy-
sis for key known cell-type-specific genes, whereas the purity of cells 
fixed before sorting was determined using previously validated 
cell-type-specific methylation signals (Extended Data Fig. 2c and 
Supplementary Information). DNA was extracted using the DNeasy 
Blood and Tissue kit (no. 69504, Qiagen) according to the manufac-
turer’s instructions, and stored at −20 °C for bisulfite conversion and 
whole-genome sequencing.

WGBS
Up to 75 ng of sheared genomic DNA was subjected to bisulfite con-
version using the EZ-96 DNA Methylation Kit (Zymo Research), with 
liquid handling on a MicroLab STAR (Hamilton). Dual-indexed sequenc-
ing libraries were prepared using Accel-NGS Methyl-Seq DNA library 
preparation kits (Swift BioSciences) and custom liquid handling scripts 
executed on the Hamilton MicroLab STAR. Libraries were quantified 
using KAPA Library Quantification Kits for Illumina Platforms (Kapa 
Biosystems). Four uniquely dual-indexed libraries, along with the 10% 
PhiX v.3 library (Illumina), were pooled and clustered on an Illumina 
NovaSeq 6000 S2 flow cell followed by 150 bp, paired-end sequenc-
ing. Total read count and average sequencing depth (in read pairs), as 
well as percentage of CpGs, per sample, at 1× and 10×, are detailed in 

Supplementary Table 1. Also listed are average methylation levels, per 
sample, at CpG, nonCpG and CC dinucleotides. Intriguingly, sorted 
neuron samples showed higher CpA methylation (approximately 10%) 
compared with other samples (approximately 1%).

WGBS computational processing
Paired-end FASTQ files were mapped to the human (hg19, hg38), lambda, 
pUC19 and viral genomes using bwa-meth (v.0.2.0)51 then converted to 
BAM files using SAMtools (v.1.9)52. Duplicated reads were marked by 
Sambamba (v.0.6.5) with parameters ‘-l 1 -t 16 --sort-buffer-size 16000 
--overflow-list-size 10000000’ (ref. 53). Reads with low mapping qual-
ity, duplicated or not mapped in a proper pair were excluded using 
SAMtools view with parameters ‘-F 1796 -q 10’. Reads were stripped 
from nonCpG nucleotides and converted to PAT files using wgbstools 
(v.0.1.0)54.

Genomic segmentation into multisample homogenous blocks
We developed and implemented a multichannel dynamic Pprogram-
ming segmentation algorithm to divide the genome into continuous 
genomic regions (blocks), showing homogeneous methylation levels 
across multiple CpGs for each sample54. A generative probabilistic model 
is used, each block inducing a Bernoulli distribution with some θi

k, where 
i is the block index and k the sample index (k = 1,..., K), and each observa-
tion (occurence of one CpG at one sequenced fragment) is represented 
by a random variable sampled i.i.d. (independent and identically dis-
tributed) from the same beta value Ber θi

k. The log-likelihood of all 
sequencing data is the sum of log-likelihoods across all blocks, each 
decomposing as the sum of log-likelihoods across all samples. The  
log-likelihood of the ith block can therefore be formalized as:
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These hyperparameters are used for regularization, to control the 
trade-off between overfitting (shorter blocks) and generalization 
(longer blocks). Dynamic programming is then used to find the optimal 
segmentation across the genome. Briefly, we maintain a 1 × N table T 
(N = 28,217,448 CpGs) for optimal segmentation scores across all pre-
fixes. Specifically, T[i] holds the score of the optimal segmentation of 
all CpG sites from 1 through to i, and T[N] holds the final, optimal, score 
across the entire genome. The table itself is updated sequentially from 
1 to N, where the optimal segmentation up to position i is achieved by 
the addition of a new block to a shorter optimal segmentation (for 
example, up to position i′):

T i T i i i[ ] = max{ [ ′] + score(block[ ′ + 1, . . . , ])}
i i′<

For this, all previous optimal segmentations are considered and a 
new block is added from position (iʹ + 1) to position i (with a maximal 
block size of 5,000 bp). The combination that maximizes log-likelihood 
is selected as the optimal segmentation from 1 to i, and the start index 
of the last block is recorded in a traceback table. Once the score of 
optimal segmentation is calculated in T[N], the traceback table is used 
to retrieve the full segmentation. An upper bound on block length 
(5,000 bases) is set to improve running times and each chromosome 
is run separately. The linear distance between consecutive CpGs is 
ignored under this model. The model and segmentation algorithm 
are further described in Supplementary Information.

https://iidp.coh.org


Article

Segmentation and clustering analysis
We segmented the genome into 7,104,162 blocks using wgbstools (with 
parameters ‘segment --max_bp 5000’) with all of the 205 samples as 
reference, and retained 2,099,681 blocks covering at least four CpGs. 
For hierarchical clustering (Fig. 2) we selected the top 1% (20,997) 
blocks showing the highest variability in average methylation across 
all samples. Blocks with sufficient coverage of at least ten observations 
(calculated as sequenced CpG sites) across two-thirds of the samples 
were further retained. We then computed the average methylation for 
each block and sample calculated using wgbstools (--beta_to_table -c 
10), marked blocks with fewer than ten observations as missing val-
ues and imputed their methylation values using sklearn KNNImputer 
(v.0.24.2)55. The 205 samples were clustered with the unsupervised 
agglomerative clustering algorithm23, using scipy (v.1.6.3)56 and L1 
norm. The fanning diagram was plotted using ggtree (v.2.2.4)57.

Cell-type-specific markers
The 205 atlas samples were divided into 51 groups by cell type, yield-
ing 39 basic groups and 12 composite supergroups (Supplementary 
Table 3). We then performed a one-versus-all comparison to identify 
differentially methylated blocks unique for each cell type. For this we 
used wgbstools’ ‘find_markers’ function to first identify blocks cover-
ing at least five CpGs (length 10–1,500 bp) to calculate the average 
methylation per block/sample and rank the blocks according to the 
difference in average methylation between target samples versus all 
other samples. To allow some flexibility, this difference was computed 
(for unmethylated markers) as the difference between the 75th per-
centile in target samples (typically allowing one outlier) versus the 
2.5th percentile in the background group (typically allowing about five 
outlier samples). For methylated markers, this was computed as the 
difference between the 25th and 97.5th percentiles (Supplementary 
Information). Low-coverage blocks (fewer than 25 observations), in 
which the estimation error of average methylation was around 10%, 
were replaced by a default value of 0.5 which is neither unmethylated 
nor methylated, thus reducing the block’s methylation difference and 
downgrading its rank. For cell type-specific markers we selected the top 
25 per cell type, for a total of 1,246 markers (Supplementary Table 4a).

Atlases for 450K/EPIC, RRBS and hybrid capture panels were identi-
fied similarly while examining a subset of genomic regions, overlap-
ping various probe sets or genomic regions (-b option). Chromatin 
analysis was performed on the top 250 markers per cell type (total of 
11,713 markers; Supplementary Table 4b). Motif analysis was performed 
on the top 1,000 markers per cell type (total of 50,286 markers; Sup-
plementary Table 4b) using the difference between the 25th and 75th 
percentile, to allow putative enhancers unmethylated in additional 
cell types.

Enrichment for gene set annotations
Analysis of gene set enrichment was performed using GREAT31. For each 
cell type we selected the top 250 differentially unmethylated regions 
and ran GREAT via batch web interface using default parameters. Enrich-
ments for ‘Ensembl Genes’ were ignored, and a significance threshold 
of binomial false discovery rate ≤0.05 was used.

Enrichment for chromatin marks
For each cell type we analysed the top 250 differentially unmethylated 
regions versus published ChIP–seq (H3K27ac and H3K4me1) and DNase 
sequencing from the Roadmap Epigenomics project (downloaded from 
ftp.ncbi.nlm.nih.gov/pub/geo/DATA/roadmapepigenomics/by_experi-
ment and http://egg2.wustl.edu/roadmap/data/byDataType/dnase/
BED_files_enh) in bigWig and bed formats. These include E032 for B cell 
markers, E034 for T cell markers, E029 for monocyte/macrophage 
markers, E066 for liver hepatocytes, E104 for heart cardiomyocytes 
and fibroblasts and E109 and E110 for gastric/small intestine/colon4. 

Annotations for chromHMM were downloaded (15-states version) from 
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSeg-
mentations/ChmmModels/coreMarks/jointModel/final3, and genomic 
regions annotated as enhancers (7_Enh) were extracted and reformat-
ted in bigWig format. Raw single-cell ATAC–seq data were downloaded 
from GEO GSE165659 (ref. 32) as ‘feature’ and ‘matrix’ files for 70 sam-
ples. For each sample, cells of the same type were pooled to output a 
bedGraph file, which was mapped from hg38 to hg19 using UCSC liftO-
ver58. Overlapping regions were dropped using bedtools (v.2.26.0)59. 
Finally, bigWig files were created using bedGraphToBigWig (v.4)60. 
Heatmaps and average plots were prepared using deepTools (v.3.4.1)61, 
with the functions ‘computeMatrix’, ‘plotHeatmap’ and ‘plotProfile’. 
We used default parameters except for ‘referencePoint=center’, 15 kb 
margins and ‘binSize=200’ for ChIP–seq, DNaseI and chromHMM data, 
and 75 kb margins with ‘binSize=1000’ for ATAC–seq data.

Motif analysis
For each cell type we analysed the top 1,000 differentially unmethyl-
ated regions for known motifs (Supplementary Table 6a) using the 
HOMER function ‘findMotifsGenome.pl’, with parameters ‘-bits’ and 
‘-size 250’39. Similar analyses were performed for the unmethylated 
regions in each cell type (Supplementary Table 6b), as well as unmeth-
ylated regions overlapping H3K27ac, but not H3K4me3, peaks (Sup-
plementary Table 6c).

Methylation marker–gene associations
For each cell-type-specific marker we identified all neighbouring genes 
up to 500 kb apart. We then examined the expression levels of these 
genes across the GTEx dataset covering 50 tissues and cell types62. We 
then standardized the expression of each gene across all conditions, 
by replacing expression values with standard deviations (z-scores) 
above/below the average expression of that gene across samples. This 
was followed by column-wise standardization in which the relative 
enrichment of a gene under a given condition is normalized by the 
enrichment of other genes under that condition. This highlighted the 
most overexpressed genes for each tissue. We then classified each 
‘marker–gene–condition’ combination as tier 1: distance ≤5 kb, expres-
sion ≥10 TPM and z-score ≥1.5; tier 2: same as tier 1 but with distance 
≤50 kb; tier 3: up to 750 kb, expression ≥25 TPM and z-score ≥5; and 
tier 4: same as tier 3 but with z-score ≥3.5.

A catalogue of unmethylated loci and putative enhancers for 
each cell type
For each genomic region (blocks of at least four CpGs), and for any of the 
39 cell type groups, fragments with at least four CpGs from all replicates 
were merged and classified as either U (fragment-level methylation 15% 
or less), M (at least 85%) or X (over 15% but below 85%). The percentage 
of U fragments was then calculated using ‘wgbstools homog --threshold 
.15,.85’, and blocks with at least 85% unmethylated fragments retained. 
These blocks were overlapped with genomic features based on UCSC 
hg19 annotations, including CpG islands and transcriptional start site 
regions (up to 1 kb from a gene start site). We also used narrowPeak 
annotations downloaded from Roadmap4 and ENCODE project5 (acces-
sions listed in Supplementary Table 6d). hg38 bed files were converted 
to hg19 using liftOver58. For putative enhancers, nonpromoter active 
regulatory regions were defined as those overlapping H3K27ac, but 
not H3K4me3, peaks under matching conditions. TF binding sites were 
downloaded from JASPAR 2022 (ref. 63).

Interindividual variation in cell type methylation
We define a similarity score between two samples as the fraction of 
blocks containing at least three CpGs and at least ten binary observa-
tions (sequenced CpG sites) in which the average methylation of the 
two samples differs by at least 0.5. Only cell types with n ≥ 3 FACS-sorted 
replicates from different donors are considered (136 samples in total).

http://egg2.wustl.edu/roadmap/data/byDataType/dnase/BED_files_enh
http://egg2.wustl.edu/roadmap/data/byDataType/dnase/BED_files_enh
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final
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CTCF ChIP–seq analysis
CTCF ChIP–seq data were downloaded from the ENCODE project5 as 
168 bigWig files, covering 61 tissues/cell types (hg19). Samples of the 
same cell type were averaged using multiBigwigSummary (v.3.4.1)61.

Endodermal marker analysis
All 892 endodermal hypomethylated markers were found using wgb-
stools function ‘find_markers’ (v.0.2.0), with parameters ‘--delta_quants 
0.4 --tg_quant 0.1 --bg_quant 0.1’ (ref. 54). For endoderm-derived epithe-
lium, 51 samples were compared with 103 nonepithelial samples from 
mesoderm or ectoderm. Blocks were selected as markers if the average 
methylation of the 90th percentile of the epithelial samples was lower 
than the tenth percentile of the nonepithelial samples by at least 0.4.

UXM fragment-level deconvolution algorithm
We developed a fragment-level deconvolution algorithm: each fragment 
was annotated as U (mostly unmethylated), M (mostly methylated) or 
X (mixed) depending on the number of methylated and unmethylated 
CpGs64. We then calculated, for each genomic region (marker) and across 
all cell types, the proportion of U/X/M fragments with at least k CpGs. 
Here we used k = 4 and thresholds of less than or equal to 25% methylated 
CpGs for U reads, and more than or equal to 75% methylated CpGs for 
M reads. We then constructed reference atlas A with 1,232 regions (top 
25 markers per cell type), in which the Ai,j cell holds the U proportion of 
the ith marker in the jth cell type. Given an input sample, the U propor-
tion at each marker is computed to form a 1,232 × 1 vector b. Then, NNLS 
is applied to infer coefficient vector x by minimizing A x b× − 2 subject 
to non-negative x, normalized to xΣ = 1j j . Alternatively, each marker can 
be weighed differently based on fragment coverage in the input sample. 
For this, b can be defined as the number of U fragments in each region 
and the rows of A similarly multiplied by Ci, the total number of fragments 
in each region, thus minimizing C A x bdiag( ) × × − 2. Additional details 
are available in Supplementary Information.

In silico simulation of WGBS deconvolution
Simulated mixtures were performed for cardiomyocytes (n = 4), blad-
der epithelium (n = 5), breast epithelium (n = 7), endothelial cells (n = 19) 
and erythrocyte progenitors (n = 3) in a leave-one-out manner. For 
this, one sample was held out and segmentation and marker selec-
tion (25 per cell type) were rerun using the remaining 204 samples. 
We then simulated mixtures by sampling and mixing reads from the 
held-out sample at 10, 3, 1, 0.3, 0.1, 0.03 and 0% into a background of 
leukocyte samples. This was repeated ten times. Finally, mixed samples 
were analysed using the UXM fragment-level algorithm with mark-
ers from the reduced (204) atlas, using fragments with at least three 
CpGs. Merging, splitting and mixing of reads were performed using 
wgbstools (v.0.1.0)54.

Array-based analysis was performed by computing, for each mixed 
set of fragments, average methylation levels across each of around 
480,000 CpG sites present in the 450K array (‘wgbstools beta_to_450k’). 
We then deconvolved these data according to the method of Moss et 
al.28 (https://github.com/nloyfer/meth_atlas).

We also simulated four-way mixtures in which background plasma 
methylomes were simulated as a combination of 90% fragments from 
leukocytes, 7.5% from a vascular endothelial sample and 2.5% from a 
hepatocyte sample. As described above, this was done by holding out 
the three samples (for example, cardiomyocytes, endothelial cells and 
hepatocytes) and then rererunning segmentation and marker selection 
on the (202 = 205 – 3) remaining samples, to obtain a set of markers that 
was then used for fragment-level deconvolution of mixtures.

WGBS deconvolution
Leukocytes and matching plasma samples (n = 23) were processed 
as described above and analysed using the WGBS methylation atlas, 

including 1,246 markers plus (for plasma samples) an additional 
25 megakaryocyte markers. Fifty-two plasma samples from 28 patients 
with SARS-CoV-2 (ref. 44) downloaded as FASTQ files were processed as 
described above. Because of the low coverage (1–2×) of these samples, 
we extended the marker set from the top 25 to the top 250 markers per 
cell type (Supplementary Table 4b), and also included 250 megakaryo-
cyte markers65. Roadmap4 and ENCODE5 samples were processed as 
described above and analysed using the UXM algorithm.

Deconvolution of 450K array data
Previously published 450K array data were downloaded from either The 
Cancer Genome Atlas (lung and breast biopsies)49,50 or GEO accession 
no. GSE62640 (ref. 48) and deconvoluted with meth_atlas NNLS software 
(https://github.com/nloyfer/meth_atlas) using our array-adapted atlas 
(Supplementary Table 12). Breast biopsies were grouped using PAM50 
classifications66.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
DNA methylation data are available in formats bigWig (position 
and average methylation across 28,217,448 CpGs) and beta (a 
similar wgbstools-compatible binary format) at GEO (accession 
no. GSE186458). BigWig and beta files for hg38 are also available. 
Fragment-level information (in pat format, including CpG starting 
index, methylation pattern of all covered CpGs and number of frag-
ments with exact multiCpG pattern) are also available. Raw fastq files 
have been deposited at the European Genome-phenome Archive (EGA) 
under study accession number: EGAS00001006791 and can be down-
loaded upon request to EGA (through the atlas Data Access Committee).

Code availability
Code is available at github.com/nloyfer/wgbs_tools and github.com/
nloyfer/UXM_deconv.
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Extended Data Fig. 1 | A human whole-genome DNA methylation atlas of healthy cell types. 205 healthy samples were obtained from adult humans, isolated 
and deeply sequenced (WGBS, mean depth ≥30x), to form a comprehensive human cell-type-specific methylation atlas.
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Extended Data Fig. 2 | Sample preparation and purity. (A) Fresh tissue was 
obtained at surgery and dissociated (optimized per tissue type), then incubated 
with antibodies, and FACS-sorted. Sorted cells were analysed using qRT-PCR  
for key cell-type-specific genes, or targeted PCR for cell-type-specific DNA 
methylation markers.DNA methylation was also analysed using whole-genome 
bisulfite sequencing. (B) Example of FACS sorting for pancreatic endocrine cell 
types. Left panel: staining for the beta cell marker C-peptide (x-axis) versus 
alpha cell marker glucagon (y-axis). Note that no double positive cells are 
observed. Centre panel: staining for c-peptide (x-axis) versus delta cell marker 
somatostatin (y-axis). Right panel: unstained control (only fluorescent 
secondary antibodies added, no primary antibodies). (C) Fragment-level 
validation of sample purity using targeted PCR. Cell-type-specific markers 

were designed using pre-existing 450K data, covering 4–7 several neighbouring 
CpGs. Shown is the percentage of unmethylated molecules in each cell type 
(including endothelial cells and leukocytes). Colour gradient fades from fully 
unmethylated molecules (allT), through those unmethylated in all but one CpG 
(allT-1), etc. Amplicon locations are reported in hg19, for acinar cells, alpha, 
beta, delta, duct, and endothelial markers (from left to right). (D) Fragment- 
level validation of the same locations, using the atlas WGBS data. Y-axis marks 
the percentage of unmethylated fragments (with ≥4 CpGs). As these markers 
show, approximately 90% of molecules in that target cell type are unmethylated, 
compared with less than 5% in other cell types, thus emphasizing the purity of 
the DNA methylation atlas using a set of independently selected DMRs.



Extended Data Fig. 3 | Purity estimation for pancreas, lung, heart, liver, 
breast, and GI using atlas markers. The percent of unmethylated fragments 
(y-axis) among fragments of ≥4 CpGs from selected differentially methylation 
markers could serve as an (under-) estimate of the atlas purity. Here we show 
one such marker for each cell type, selected from the top 25 markers, and use 
fragment-level analysis to demonstrate the purity in the target cell type 

compared to other cell types from the same tissue or environment. (A) Pancreas. 
(B) Lung. (C) Heart. (D) Liver. (E) Breast. (F) GI tract. For most cell types, 90%  
of the molecules in the target cell types are unmethylated, compared with less 
than 5% of other types. This is an under-estimation, as some heterogeneity 
could occur in each cell type, reflecting stochastic noise, cellular states, age,  
or environmental changes.
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Extended Data Fig. 4 | Biological replicates of the same cell type, from 
different individuals show a surprisingly low rate of differentially 
methylated blocks. We focused on 37 cellular subtypes with n≥3 replicates 
(e.g. endothelial cells from a specific tissue) and measured the average 
percentage of methylation blocks (≥3 CpGs) that differ in their methylation by 

50% (absolute delta beta), across replicates (shown as Y-axis). Nearly all cellular 
subtypes (36/37) differ by ≤0.5% of blocks suggesting a very high degree of 
conservation among replicates. Dotted red line marks the average number of 
differential blocks between two random samples of different cell types (4.9%). 
Box plots mark median and interquartile range (IQR), with 1.5*IQR whiskers.
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